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1. INTRGDUCTION

With the widespread usc of numerical (hydro-) codes to describe the behavior of bodics impacting
at high velocity, it is vital that code developers and uscrs be familiar wath the various numerical
models in the codes. All too often, cffort is concentrated on the "numerics” of a code, such as
intcgration and discretization techniques, antificial viscosity formulations, mass lumping and pressurc
averaging techniques, and mass advection schemes, with the same rigor being absent when considering

the "physics” of the code.

Because code development involves significant effort, it is common for codes to evolve or be
passcd down dircctly, rather than be written from the ground up. With this sort of cvolution, it is
possible to avoid "rcinventing the wheel.” Unfortunately, this mentality, if taken to the extreme,
precludes the ability to redesign the "wheel” and can result in an incompatible combination of "wheel”
and codc "vehicle.” Common problems associated with material model cvolution are enumerated

below:

(1) Many materia’ modcls arc based on assumptions and limitations which are often not paSscd on
with the model. Thus, material models which are valid only for a particular class of problems
(e.g.. small compression, duclile behavior, ctc.) can be erroncously applicd to more general

classes of problems.

(2) Goodness of a material model is often judged on its abilivy to solve a particular set of
problems, rather than on adhcrance to fundamental principles. Such heuristic approaches
(c.g., usc of nen-associated flow rules) can be exercised with caution but often become

institutionalized and taken as fact by an unknowing community.

(3) Many ncw matcrial modcls are derived by applying ad hoc modifications to older modcls,
rather than rederiving the modcls from basic principles. When this is done carclessly,

conflicting assumptions or limitations can render such models invalid.

(4) Matcrial librarics tend to take on a life of their own and are passed down from generation to
generation without the accompanying experimental data used to generate those libraries.



When this happens, material data are often used under conditions (e.g., strain rates, pressures,

ctc.) where those data arc not valid.

- One aspect of material modeling which is cxtremely important to impact codes, and to which all of
the abovementioned problems are relevant, is the equation of state (EOS). In this report, equations of
state for use in impact codes are discussed in general tc;ms. with the Mie-Grilneisen equation of state
uscd for specific illustrative purposes since it is the workhorse EOS of the current generation of
hydrodynamic wave codes. Basic derivations, assumptions, and limitations of applicability are all

discussed, with the prime focus being on cquation-of-state stability.

2. THERMODYNAMIC STATES AND THE EQUATION OF STATE

To completely describe the volumetric behavior of a material, the values of the thermodynamic
state variables (i.c., the thermodynamic coordinates) arc needed for cvery state of the material.
Thermodynamic state variables arc propertics which are only dependent on the state of a material and
not on the path taken to arrive at that state. Examples of typical thermodynamic state variables

include pressurc and temperature, as well as specific volume, internal encrgy, enthalpy, entropy, etc.

To describe the state of a simple substance, excluding such phenomena as phase change,
dissociation, or clectromagnctic work, a knowledge of the material’s pressure, as a function of density
and temperature, is sufficient to completely describe the state of a material. In general, these

thermodynamic state data arc related in one of three forms.

Tabulated experimental data is one popular form of representing thermodynamic state data. Steam
tables arc probably the most widcly used form of tabulated thermodynamic data. Data are tabulated
over a large range of states, and intcrpolation becomes necessary to obtain data between the tabulated

statc points.

Of a similar naturc to tabulated thermodynamic data is graphical thermodynamic data. The
Mollicr diagram, which graphically represents the states of water in its various phases, is the classic
cxamplc of graphically represented thermodynamic data. To the experienced user, graphical state
tables provide a fast, accuratc means of evaluating the change in state variables, when something is
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known about the thermodynamic process in question.  Like tabulated data, extensive experimental

testing is nccessary to generate the data found in graphical thermodynamic state tables.

The third, and possibly most common, way to represent thermodynamic state data is in analytical
form, and is referred 10 as an cquation of state. Traditionally, the EOS expresses pressure in terms of
density and tcmperature. Describing material by way of an EOS has many advantages. The form is
compact, much more so than cxhaustive tabulated data. An EOS may be mathematically codificd, thus
making it thc most attractive on the basis of programming considerations. Additionally, the
interrelationship of state variables may be mathematically derived. from the EOS, thus providing a

more fundamental understanding of the thermodynamic phenomena at work.

On the other hand, cquations of state can suffer from scvere deficiencies, whicn can make their use
prone to crror. Invariably, cquations ¢f staic are formulated, with a host of inherent assumptions about
the nature of the material behavior. Common examples of such assumptions include constant specific
heats, idecal gas, etc. While these assumptions may be valid over a small domain of possible states,
they are often poor at describing the material under extreme thermodynamic conditioas like high/low
pressure, phasc change, and the like. This limitation, in and of itsclf, is not bad. However, those who
usc these equations arc not always cognizant of the conditions under which a given EOS is valid.
Thus, cquations of statc may be used in a thermodynamic domain where the EOS parameters are no
longer valid. Also, there can be a problem with EOS forms which, though capturing the essence of
the material behavior, suffer from "higher order” inconsistencies that only manifest themselves

obliquely.

When it comes 1o hydrocode modeling of material deformation, where the EOS is just a means to
a computatioral end, sophistocated equations of state, though available in the litcrature, are rarely used
because of simplicity (i.c., efficiency) considerations, This focus on computational simplicity merely
serves 1o enhance the likelihood of EOS failure in hydrocode computations,

All equations of state need data with which to drive themselves. In the case of the Mie-Griincisen
EOS, as used in today’s hydrocodes, thermodynamic state variables an: expressed relative to those
states found along an experimentally determined prcssure-volumc curve wh:ch for the cme of impact
data, is usually chosen as the Hugoniot curve. Thus, before the Mle-Grﬂnetscn EOS can bc discussca
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in detail, the rcader must acquirc an appreciation of the Hugoniot and the thermodynamic process of

shock transition.

3. SHOCK TRANSITION: A THERMODYNAMIC PROCESS

A shock is a volumetric disturbance which travels faster, in a medium, than the bulk speed of
sound (i.c., sonic velocity) characieristic to the state of that medium. A shock is characterized by a
shock front, which itsclf is very thin (thickness on the order of micrometers), and is analytically
idcalized as a discontinuity in physical propertics such as density, pressurc, and energy. The thinness
of the shock coupled with the high velocity of the shock front ensure the adiabatic nature of shock
transition. Large amplitude disturbances are not necessarily shocks if the thickness of the disturbance

is rclatively large. Correspondingly, the amplitude of a shock need not be necessarily large as long as

the disturbance is traveling faster than the sonic velocity.

Shock transition may be thought of as an adiabatic irreversible thermodynamic process which
permits the state of a material o be altered in a fashion similar 1o isentropic, isothermal, isochoric,
isenthalpic, and isobaric processes. Whereas all of these other thermodynamic processes are
characterized by the constancy of a particular state variable, the process of shock transition is
charactcrized only by the existence of a shock wave. No thcrmodynamic state variables remain
constant during shock transition. Nonctheless, the shock transition process can be as well

characterized as any of the other thermodynamic processes, as will be shown from the following

derivation of the basic shock relations.

4. BASIC SHOCK EQUATIONS

Consider a shock disturbance traveling at velocity U, into a stationary medium, with density,
pressure, and specific internal energy of p,, p,, and E, respectively. Bcehind the shock, the material
has acquired a parnticle velocity, given by u,, traveling in the same dircction as the shock disturbance,
The dcnsity, pressure, and specific internal cnergy arc p, p, and E, respectively. This situation is
depicted in the Laboratory Frame diagram of Figurc 1. If an obscrver could be situated right on the
shock wave, so that the shock were 10 appear stationary, the situation would appcar like that depicted
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in the Stationary Shock Frame diagram. The continuity, momentum, and energy relations are derived
below by considering an infinitesimally thin contol volume, which fluxes mass dM, over a time
increment dt, which straddlcs the shock front, in the stationary shock frame. The control volume

projects unit arca A onto the shock front.

CONTINUITY:

MassIn: p, U A dt
Mass Out: p (U, - up) A dt

oY
P, U, - u,
Or, in terms of compression .
u
B o= 2__, wherep=-2 -1
U, - u, P,

MOMENTUM:

Decelerative Impulse: (p - p,) A dt
Momentum Decrease: dM [U, - (U,-uP)] =(p, U Ady [U, - (U,-u,)]

p-p,=p, U, uy forp,=~0, p=p,U, u,

ENERGY:

Encrgy In:

Intecmal Encrgy In : E,dM = E, (p, U, A di)

Kinctic Energy In : 1H2dM U} = 112 (p, U, A dy) U}

Net Work on Control Volume: YF dx = (p, A) (U, d1) - (p A) [(U,-u’) di]

Encrgy Out:
Intemal Encrgy Out : E dM=E (p, U, A d)



Kinetic Energy Out D 12dM ul? =102 (p, U, A dy) (U,-u)?

Intemal Encrgy Accumulated: 0
E-E =12(+p)lip,-1ip); forp,=0, E-E,=172p(lip, -1p)

Or, in terms of compression

P+p,) Bk E-F = pB

EF-FE = for p,~0,

2, (lew)’

° 2p,(1+p)

5. THE HUGONIOT

The momentum relation derived above expresses pressure in terms of shock and particle velocities,
U, and u,, respectively. If the nature of the shock or particle velocity relationships are explicitly
known, then the pressure can be expressed in terms of specific volume v, density p, or altemately,
compression |, This pressurc-volume relationship for the shock compression process is called the
Rankinc-Hugoniot cquation—or more simply, the Hugoniot—and is the locus of states which can be

achieved through the shock transition of a matcrial from a given (p,, v,) state.

It is vital to note that the Hugoniot does not represent the actual path of states through which a
matcrial progresses, when transitioning from the (p,, v,) state to (p, v), but rather the locus of final
(p, v) states which can be achicved through shock transition. Also, since we know shock transition to
bc a compressive proccess only, a particular Hugoniot curve has one endpoint: the pre-shocked
(py» V) statc. From this endpoint, the Hugoniot proceeds in the direction of increasing pressure and

decreasing volume.

Examining the shock cnergy relationship for the case of an infinitcsimal shock, it is scen that
dE = -p, dv, which cxactly equals the reversible work that is done on the material during the
infinitesimal compression.  This condition makes the process reversible adiabatic, thus isentropic. The

implicaiion is that at its endpoint, the Hugoniot is tangent to the isentrope through that point. Except



at its endpoint howcever, the Hugoniot slope (with respect to density) is necessarily steeper than the

iscntrope through a given point.

Unlike other thermodynamic processes, for example iscntropic compression, where knowledge of a
singlc state on an isentropic (p, v) curve is sufficicnt to completely describe that isentropic curve,
knowledge of a state point on a Hugoniot curve is not sufficient 1o define the Hugoniot curve. That is
to say, there arc many (p,, v,) states which can possibly shock transition 1o state (p, v). This is

identical to saying that there are many Hugoniots through any state point, as we shall prove in the next

section.

6. SOME PROPERTIES OF THE HUGONIOT

To prove the assertion that there is no unique Hugoniot through the state point (p, v), let us
assume the contrary and show an inconsistency. Consider the Hugoniot referenced to state Py Vo)
(we will hereafter call this the (p,, v,) Hugoniot) which goes through state point (p, v). - Consider also
another Hugoniot, referenced to state (p,, v,), which also goes through state (p, v). If onc assumes
that there is a uniquc Hugoniot which goes through the state (p, v), then one is forced to conclude that
both states (p,, v,) and (p,, v,) lic along this unique Hugoniot. If (py» vy) is in fact on the (p,, v,)

Hugoniot, then shock transition can theoretically occur from the state (p,, v,) to (p,, v,).

To show the inconsistency which arises from this assumption, consider the changes in specific
intemal encrgics which arise when shock transitioning from statcs (P, v,) to (p, V), from (p,, v) to
(p. v) and also from (p,, v.) to (p;, v,).

E-E,=12(p,+p)(v,-V),
E-E =112(p,+p)(v,-"),

E,-E, =12 P, +p)(v,-v).

Subtracting the sccond two cquations from the first should produce an identity, but it can be readily

scen that not all of the temms cancel: -
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0=12{p,(v;-¥) +p(vy-v)-p, (v, - ).
This can he reduced to:

(p,-pn)l(va-v,):(p-p,)l(v,~v).

Not only is this cxpression not an identity, but it will only reduce 1o a truc statcment if the Hugoniot
coincides with a Rayleigh linc, which is linc of constant slope in the (p, v) planc. Additionally,
thermodynamics tells us that there cxists a local maxima of cntropy along a Raylcigh line, where it is
tangent to an iscntrope.  Thus, the Hugoniot cannot possibly lic along a Raylcigh linc, for to do so
would imply decreasing entropy with increasing shock strength as the shocked state moved beyond the

local cntropy maxima on the Raylcigh linc.

Thus. the inconsistency has been shown, and one can conclude that the assumption that both
(Pa Vo) and (p;. v)) lic on the same unique Hugoniot must be false, cven though the Hugoniots

oniginating at both these points intersect at the point (p, v).

A corollary to this point is that, if onc were to proceed from state (p,, v,) towards a specific
volume of v, by way of two shocks, the final pressure will not be the same as when specific
volume v is achicved through a single shock, since the new Hugoniot originating at the intermediate
shocked statc will differ from original (p,, v,) Hugoniot. In the limit, if the specific volume v is
reached through an infinite number of infinitcsimal shocks, it should not be surprising that the path of
compression will lic along the isentrope through the original (p,, v,) point, since an infinitesimal sho.k

was shown previously to be isentropic.

In practice, only a single Hugoniot is experimentally determined to characterize the behavior of a
matcrial—that Hugoniot which has as its (p,, v,) statc ambicnt conditions of pressure and specific
volume. Thus, references to "the” Hugoniot for a material refer to a particular "reference” Hugoniot
which has as its origin the ambicnt (p,, v,) statc.

7. EXAMINATION OF SEVERAL HUGONIOT FORMS

7.1 Constant Sound Speed. Constant sound speed implics that all disturbances travel at the same

velocity, or



Dctermining the particle velocity from continuity gives
up = Co (I - po/p) J

It is clear that the particle velocity can never exceed the shock velocity and simultaneously satisfy

conlinuity, so the implication is that the maximum possible particle velocity is also the shock velocity
C,, and this only occurs as the shocked density becomes infinite. It should be clear from momentum
considerations, therefore, that the maximum pressure achicvable in a constant sound spced medium is

P, C,%. Indced, the rclation is given by

P Cot
(1+w

ph—po=

7.2 The Ideal Gas Form. Much of the work donc in thermodynamics is done on the assumption

that the working medium may be approximated as an ideal gas. Unfortunately, at large compressions,
materials do not generally behave in an ideal fashion. Nonetheless, we examine the Hugoniot form for

the sake of academic interest.

An ideal gas is one which obeys the EOS p/p = RT, where R is the gas constant, and T is the gas
temperature. Additionally, an idcal gas is assumed to have constant specific heats Cp and c,. Under
these conditons of idealness, E = ¢, T, and the EOS may be expressed as p/p = (R/c,) E. But

R = ¢, - ¢, by definition, and the ratio ¢ /c, is oficn expressed as v, so that
P=pY-DE.

Cons.der the shock energy equation, and eliminate energy terms from it by substituting the gamma law

from above. In that case,

ph po -

P, +py) (Np,-1/p) .

POY-1)  p(v-1)




This may be solved for the Hugoniot pressure py,, and expressed in compression form, by substituting
(1 + ) for p/p, to give

(y+DA+p)-(v-1)
(y+1D)-(y-1)(1+p)

ph/po =

Expressed in a (p, - p,) form, it becomes

2yp .
2-(y-Dp

Py-P, =
This Hugoniot form is scen to approach infinite pressure when

B=2/(y-1).

This limit, expressed in terms of density, is

7.3 The Linear U, - u, Form. It has been empirically observed for many materials, over a

significant range of pressurcs, that the relationship between the shock and panticle velocity can often
be fit by a straight line, as in

U, = C,+S u,.
Thus,

Py =P, =P, (Co+Su) u,,

1
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and from continuity, particle velocily may be determined as

nC,
u, = , where n = 1 - .

Panticle velocity may be climinated from these cquations o give

2
po Co n

Pr-P, = ———— .
P (1 -nsy

Expressing this in compression form gives:

P, Con(1+p)
(1-(S-1)p)?

ph‘po =

It can be secn, for S > 1, that this lincar U, - u, Hugoniot cquation approachcs infinitc pressure at
finite compression (| = 1/{S - 1]), not unlikc the idcal gas EOS. Otherwise, for S < 1, the Hugoniot
pressure converges to p, C,2/(S - 1)* for large u. Also, the special casc of S = 0 reduces to the
previously derived situation of constant sound spced. This finite limiting pressure for S < 1 arises
because the U; function intersects the uj, function at U, = CJ/(1 - S). Since U, must always cxceed u,,.
these limiting values of U, and u, causc the limiting valuc in pressure 0o. Though this U, = u,,
condition is unrealistic, apparcntly scveral materials cxhibit S < 1 at lower compressions (Kohn 1969).

Such data can be misleading, and can causc problems if S < 1 is retained out 10 larger compressions in

numerical simulations.

7.4 The Polynomial Hugoniot. Oficn, a form is not assumed on the U, - u, rclation, or the

compressibility at all, but rather, an empirical fit is made dircctly to the Hugoniot, as in

Pi-P, =), K n',

ir1

where K; are the cmpirical constants, and n is the order of the polynomial fit. A popular value

for n is three, giving a cubic fit. Note the functionally different forms between this Hugoniot form
and the lincar U, - u, form, for instance. To work the problcm in reverse, and obtain the shock
velocity for a cubic Hugoniot fit, for example, onc can manipulatc continuity and momentum

cquations to get:

12



Ul=[K + (K, +K)p+(K+K)p+ Kp'llp,.

Note that U.” at u = 0, which is C?, cquals K /p,,.

8. THE IMPORTANCE OF DISTURBANCE VELOCITY ON NUMERICAL STABILITY

The primary cmphasis in describing the shock loading behavior of materials has been on the
Hugoniot fit itsclf, the p, vs. p relation. However, the importance of the disturbance speeds U,
and C (i.c.. the shock velocity and local sound speed) cannot be underestimated. In impact
computations, where thc wave motions arc the imponant part of the problem solution, knowledge of
disturbance velocities becomes necessary for accuracy, and in explicit schemes, for stability, of the

calculation.

In explicit integration schcmes, which are by far the most prevalent in use for impact calculations,
stability rcquirements place limitations on the integration timestep. In particular, the explicit
integration timestep must be limited so that a disturbance can traverse no more than a single
computational zonc per integration cycle. To cnforce this requirement, onc needs knowledge of both
the particular zonc size in question and the disturbance velocity in that computational zone. The
former is simply a function of zone gcdmclry, while the latter is the shock velocity U,, when the
material is compressing, and the sound speed C, when the material is expanding. Thus, an accurate
knowledge of disturbance vclocities U; and C, under various statcs. of loading, is vital to the numerical

stability of cxplicit integration schemes.

In addiiion to the cifcct of the disturbance velocities on the stability of the explicit numerical
integration scheme, these velocitics are intimately related to the stability of the EOS calculation itself,
cven in the absence of a numerical code application. There are thermodynamic considerations which
must be satisficd by any valid EOS.

Three particular modes of EOS instability will be addressed in the following sections. Stated in
English, thesc stability criteria sound almost trivial, since they immediatcly result from fundamental
thermodynamic statements, which have been known and professed for ycars. Nonctheless, these
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criteria, which can be expressed mathcmatically, and are tested in the framework of the Mie-Grilneisen
EOS, show a nccessary interrelation amongst various EOS parameters, which is not commonly
appreciated.  As such, indiscriminate choice of paramcters to drive the EOS will often cause at least
one of these critcria to be violated. Use of such data in a numerical scheme can result in bizzarre

manifestations of numerical instability.

The three stability criteria are given below and apply to materials where phase changes and/or
porosity are not considered (i.c., simple substances). For the first two criteria, consider a state (p, v),

which lies on the Hugoniot originating from the state (p,. v,).

(1) at the state (p, v), the slope of the Hugoniot with respect to density must exceed the slope of

the Rayleigh line connecting states (p,, v,,) and (p, v),

(1) at the state (p, v), the slope of the iscntrope must lie between the slope of the Hugoniot, and

the slope of the Raylcigh line connccting states (p,, v,) and (p, v)i

(I1) the slope of an isentrope with respect to density is always greater than zero.

From the second law of thermodynamics, it is known that entropy is monotonically increasing along a
Hugoniot. By definition, entropy is constant along an isentrope. Finally, a Raylcigh line is known to
have one point of maximum cntropy. It can be shown (Zuker 1977) that this point of maximum
entropy lics between the states (p,, v,) and (p, v). Thus, at the state (p, v) and traveling in the
direction of increasing density, entropy must be decreasing. Criteria 1 and 11 express this relational
placement of the Rayleigh line, the isentrope and the Hugoniot. Criterion III simply implies the

obvious, that the specd of sourd in a matenal is a positive quantity.

9. MODE I INSTABILITY OF SEVERAL HUGONIOT FORMS

It was mentioned that a Hugoniot has the slope (with respect to density p or compression ) of the
isentrope only at t:ie end point of the Hugoniot. At other points along the Hugoniot, the Hugoniot will
always be steeper than the corresponding isentrope. Let us examine the two most popular Hugoniot

forms (linear U, - u, fit and cubic fit) to check their adhcrence to these rules. The slope of the
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Hugoniot at any point on the Hugoniot is simply dp,/dp. Total derivatives are used since, along the
Hugoniot, pressure is only a function of a single variable (p, p, or v, at the discretion of the user). To
determine the slope of the isentrope at that point, one can rake use of the definition that dp/dp |,

cquals the square of the sonic velocity.

For the case of the lincar U, - u,, fit, recall that

P, Con(l+u)
(1-(S-1)p)?

Py-P, =

Taking the derivative with respect to |, onc may obtain

dp, _ p,Col1-(S+ Dl

dyp (1-¢s-1up

The chain rule dictates that dp,/dp = dp,/dp d/dp, where d/dp ts simply 1/p, so that

dp, _ €, [1+(S+1)p]

dp i1-(S-Hup

Without knowing additional information about the EOS, the slope of the post shock isentrope

op/op | , = C%, and, thus. the sonic velocity C, cannot be explicitly determined after a shock.

However, the particle velocity relative to the stationary shock front after a shock, equal to (U, - W) is
known to be subsonic. It may also be shown that dp/dp along the Rayleigh line connecting the pre-
and post-shocked states exactly equals (U, - up)z. If the Hugoniot slope is larger than the slope of the
actual isentrope, then clearly its slope must be larger than that of the Rayleigh line, which represents
the lower bound on the slope of the isentrope.

From continuity, the quantity (U, - ug) may be expressed either as U/(1 + ) or up/un Thus, de
slope of the iscntrope dp/dp |‘ = C? mu;t be greater than U,z/(l + )%, which is the slope of the
Rayleigh linc. Now, consider the Rayleigh line slope at some point on the Hugoniot. For the linear

U, - u, assumption, U, = C, + Su,. However, it is desired to obtain U, in terms of compression p.
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Elimination of ug from the continuity cquation gives,

_w, _ (U-C)IS
S R T e YO
Upon solution for U,,
C,(1+p)

TH-Gs-Dpl

Thus, dp/dp lR = U2A(1 + p)?, and is given as

| ___ G
3 lx [1-(S-1)pP

For the Hugoniot slope to exceed the corresponding Rayleigh line slope for all p > 0, the ratio of
dpy/dp to dp/dp IR must always exceed unity. Failure to do so implics that there can exist no valid
cquation of state to describe the material. We will call Hugoniots whose slope does not exceed that of

the corresponding Rayleigh line, as Mode I unstable. Mathematically, the condition is stated below:

MODE I CRITERION:

dp,/dp

> 1, for p > 0, along the Hugoniot.
dp/dp lx

For the linear U, - u, form, the stability ratio, which must excecd unity, is given by

dpide _ [1+(S+1)u)

> 1, for u > 0, along the Hugoniot.
3p13pl,  I1-(5-1)u) g e T

Clearly, for any S greater than zero, the stability criterion is not violated. Thus, the lincar U, - u,
formulation is always Mode I stable.
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Considcring now the cubic cmpirical Hugoniot fit, it is of interest to sce how this Hugoniot form
farcs with the Modc I stability critcrion. Mimicking the opcrations performed on the U, - u, forms,

dp,/dp is detcrmined as

dp, 2
7p- = [K|*2K2P+3K3F ]/P,-

The slope of the Rayleigh line, op/dp |R cquals Uf/(l + )%, and is given by

_ K] + (K|+Kz) B (Kz"K3) pz + K; p3
R p, (1+p)?

op
ap

Finally, thc Mode I stability critcrion, which insurcs that the slope of the Hugoniot excecds that of the

Rayleigh line connecting the pre- and post-shocked states, is given as

dp,/dp (K, +2K, p + 3K, p?) (1 + 1) »1

apldply K, + (K +K) B+ (K +K) u? + Ky 0

for i > 0. along the Hugoniot. Becausc of the dependence of this term on three independent
parameters. a simple answer cannot be given. However, the data collected and fit by Kohn (1969) into
K,. K;, K, form can still be checked for slope violations. It was found that 21 of 77, or 27%, of the
matcrials violated the criterion in part of the compression range where the empirical fit was supposedly
valid. Perhaps this behavior can be attributed to the forcing of a cubic Hugoniot function onto a
highly non-linear material response, possibly duc to phasc changes. In such cascs, Mode I instability
implics that a cubic Hugoniot fit is inadequate. The ramifications of Mode I instability on
computational stability are not as clear as the other modes to be discussed, where instability is more

likely to guarantce computational catastrophe.

10. INTRODUCTION TO THE MIE-GRUNEISEN EQUA'I’ION OF STATE
Traditionally, an EOS is an equation which describes the pressure of a material as a function of

density and temperature. It is needed 10 solve the continuity, momentum, and cnergy equations which
govemn the thermodynamic transition of a material. In the case of impact though, thermodynamic
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states change so rapidly that there is litle time for heat transfer. Under these conditions of adiabatic
transition, the energy cquation nced not explicitly contain temperature, and the goveming equations
may be solved if cither the entropy or the intemal cnergy is known as a function of pressure and
density (Zeldovich and Razier 1966). The Mie-Grincisen EOS is of this varicty, in that internal
cnergy, and not temperature, is related to pressure and density. The penalty for not having the

traditional p (p, T) form: lation is that lcmperature is not a computable state variable.

For impact calculations, accurate description of shock transition states is very important.
Additionally, high pressurc material data arc usually obtained from shock transition experiments and is
givcn in lhc‘form of a Hugoniot curve. The Hugoniot provides the mcans to ascertain the pressure
and internal cncrgy as a function of compression for those thermodynamic states which can be

achieved through shock compression of a material.

Thus, rcalizing that an EOS is only an approximation to the actual behavior of a material, it seems
desirable to have an EOS which is very accurate along the path where data are available (i.c., along
the experimentally derived Hugoniot). State points other than those found directly on the Hugoniot are
obtained from an EOS which rcfcrences material back to the state along this reference Hugoniot. The
Mic-Griineiscn EOS provides the framework through which state points can be ticd back to an

arbitrary rcference function, as described below.,

Consider the textbook form of the Mic-Grilnciscn EOS (McQuarric 1976), expressed in terms of

density
p=9¢ %g +Tp(E-U),

where U is the specific intcratomic potential energy (a function of density only), and E is the specific
intcmal encrgy compriscd of both interatomic potential (i.c., compressive) energy and atomic
vibrational (i.c., thermal) encrgy. Note that the term p2 dU/dp rcpresents the "cold pressure,” which is
that pressure arising from compression at absolute zcro temperature, in the absence of specific
vibrational intcmal cnergy (E-U). The tenn T is the Grilncisen cocfficient, which is a function of
density only, derived by assuming a particular form on the vibrational frequencies of the crystal lattice.

If the cold pressurc curve is known (or assumed), and if the thermodynamic states are known
along another rcference curve (c.p., the Hugoniot), then the Griineisen coefficient may be inferred

I8



dircctly, as a function of density. On the other hand, if the thermodynamic states arc known only
along a "non-cold” refercnce curve, but if a functional relationship is assumed for the Griinciscn
cocfficicrt, then the interatomic potential function may be implicidy removed, by referencing the
thermodynamic state at any point (p. p, E) back to the state along the reference curve, at the same
density (p... p. E,.). This is donc by taking the difference of the Mie-Griineisen EOS, given above,
at the two state points in question. It is this approach which is almost universally adopicd by
hydrocodces, to give

(P-Prp =TP(E-E,p.

It should be noted that ihe interatomic potential, U, and thus the cold pressure curve, may be -

rccovered, by solving the following non-lincar ordinary differential equation:

du TU _ ¢(p)

dp p p?

where &(p) is a function of density only, obtained from the "non-cold” reference curve and the

assumed Griincisen function:

¢(p)=p,q‘FpE,4-

For the present purposcs, the reference function is chosen as the Hugoniot, so that the Mie-Griincisen
EOS becomes
(p-p)=Tp(E-Ey.

The quantities p,, and E,, are the pressure and specific internal energy of the reference Hugoniot state
point at the samc density as the state (p, p, E) in question. Often, the shock cnergy cquation is

substituted dircctly into the Mic-Griincisen EOS to give

P=py(1-Tu/2) + p,T (1+p) [E-E,] - p,Tu/2.

The ambicnt conditions p,. E,, arc gencrally pegged at zcro, so that the Mic-Griincisen EOS, with

Hugoniot reference, is expressed as

P=p,(1-Tuf2) + p, T(1+p)E.
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Note. in an analogous fashion to the Mic-Griinciscn EQS, that idcal gas bchavior may be modcled

if 1 -g-% , given by T for solids, is held constamt for gascs, cqual to (y - 1), and if the Hugoniot
p [

form is that for an ideal gas; namcly,

2yp

PRt TG

The Mic-Griincsicn EOS, with Hugoniot reference, is only valid where the Hugoniot reference is
valid. If the rcference Hugoniot is obtained by shocking matcrial from ambient conditions, then
clearly the Hugoniot is only valid in some region p > 0. Hydrocode implementors often fail to deal
with this fact accurately. It is well known that the Hugoniot curve is a very closc approximation to
the iscntrope at small valucs of compression, and so the pressure reference function usually employed
by hydrocodes in tension is the isenirope, which is generally approximated by a curve which matches
value and slopc of thc Hugoniot at it = 0. There is nothing wrong with this assumption, but
innaccuracics arc introduced when the shock encrgy equation is still employed directly to compute the
cnergy reference function, as in EPIC (Johnson, Colby, and Vavrick 1978), which is tantamount to

assuming the cxistence of a tensile shock.

Clearly, the encrgy reference function to drive the Mic-Griinciscn EOS in tension should not be

the shock energy equation

E -E=-—2%Y  (uherep,~0),

Y 2p,(1+w)

but rather some physically plausible function—for instance, the isentropic expansion integral of work:

n

o= [ Py

o Pof l+u)’

Onc possible approximation for the iscntropic release function for i < 0 is to assume constant

compressibility. In this case, where p, = E, = 0 is assumed for simplicity,
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Py=K,p, and

B
Ey= [Py -p—T"i-— = (K,/py) [in (1+ ) = p/(L+w)].
0 o

1+p)?

Comparing the intemal cnergy from this reference function to that computed from the invalid

application of the shock cnergy cquation in the tensile region, given by

£ Pyv KW
Yo2p,(14 ) 2p,(1ep)’

one may observe that the difference in compulted internal energics is significant, as shown in Table 1.

TABLE 1, Comparing Intcmal Energics Resulting From Conslant
Compressibility "Isentropic™ and "Tensile Shock” Expansions

po E/Ko po Eh/Ko
1 VIV, (iscntropic) (tensile shock) % Error
0.0 1.00 0. Q. 0.
-2 1.25 0.027 0.025 -7.4
-4 1.67 0.156 0.133 -14.7
-6 2.50 0.584 0.450 -23.1
-8 5.00 2.39 1.60 -33.1

Other reasonable choices of isentropic release pressure reference functions may also be used in the
region u < 0. For cxample, let the reference sound speed for a material in tension (U < () be

described with the following function:
C=C,(1+p)f.

For this particulur sound speed refercnce function, the tangent bulk modulus may be computed as

K=K/(1+p)®D,




This function has many nice properties. Two such advantages are that it reduces to constant
compressibility for g = -1/2, and to constant sound speed for g = 0. Additionally, the sonic velocity is
al the proper value at i = 0 and, for g greater than zero, the sonic velocity drops off to zero when the
matcrial is infinitcly ¢xpandcd (at g = -1). Increasing the exponent g causes the sonic velocity to drop
off more rapidly in tension and will limit the maximum value of tension achievable during an
isentropic cxpansion, which is a material feature observed experimentally and often modeled
computationally by way of a p,,,;, parameter. The rcference pressure function is acquired by

integrating the tangent bulk modulus and is given below for g not equal to (-1/2):

P X,

- du (28+2)

= | K = (1+p) -1}.
Pro '!; (1+p)? (28+2) [ W ]

The reference energy function (for g not cqual to -1/2) is acquired by integrating the reference pressure

function:

o
v [P g L) - 1] - u(2g+2)
o Po (1+u)’ ® p,(28+2)(2g+1) (1 + )

For the special case of constant sound speed adiabatic expansion from p = 0, the exponent g cquals 0,

and one gets:

Py = K,(u+u?/2, and

K, p?

E = —-=\—
Y 2p,(1+p)

On the other hand, the reference pressure may be limited 10 a tensile pressure of p,,;,,, Which cccurs at

infinite cxpansion, by defining the exponent g to be
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Using stecl, as an example, where K, = 1,380 kbar, and p,;, = -35 kbar, g takes on a value in the

vicinity of 19. For aluminum, where K = 700 kbar, and p,;, = -10 kbar, thc value g takes is

approximately 34. Tablc 2 depicts the parameter rclationships for g = 20.

TABLE 2. Valucs of Compression, Relative Volume, and Normalized Values of Sonic
Velocity, Pressure, Tangent Bulk Modulus, and Sccant Bulk Modulus, Respectively,
for the Proposed Tension Limiting Model, With g = 20

83 VIV [} C/ Co pu:t/ pmin K/Ko p/Kol‘1
0.00 1.00 1.000 0.000 1.000 N/A
-.002 1.002 961 081 921 .960
-.02 1.02 .668 572 437 .681
-4 1.04 442 .820 .188 488
-.06 1.06 290 926 .079 367
-.08 1.19 .189 970 033 .289
-.10 1.11 122 988 .013 235

11. THE GRUNEISEN PARAMETER

The Griincisen paramcter I is an imporiant parameter used by the Mic-Griineisen EOS. Though

the assumption that I is a function of volume only is only an approximation, the paramcter itsclf is

not empirical but in fact carrics physical significance. For ideal gases, the parameter analogous 1o I

has becn shown to be (v - 1). For solids, the parameter also has meaning.

To compute its value, consider a cube of matenal at state 1 characterized by pressure p and

volume V. Let the material undergo a two-stage thermodynamic process. First, add heat dQ at

constant pressurc in order 1o go to state 2, characterized by p, V + dV. Finally, and with no heat

addition. iscntropically compress the material back to its original volume in order to arrive at state 3,

characterized by p + dp, V.

During the process 1-2, the cube of malerial, the length of whose side was originally L, clxpands

so that the length is now L (1 + adT), where a is the cocfficient of lincar cxpansion. Thus, the
relative volume change dV/V is given by 3adT. The amount of heat addcd per unit mass dQ, is




¢, dT. For solids, which arc ncarly incompressibic in comparison to gascs, the specific hecats at
constant pressure and volume, ¢, and ¢, arc ncarly identical. Thus, the heat added can be

approximated by ¢, dT. The tempcerature change dT may be climinaied by relating dT back 10 volume

change dV so that

0 c, dv
3aV '

it

The work done by the material per unit mass is ncgative since the volume change is the opposite sense
of the pressure loads and is given by dW = -p dV/(pV). From the first law of thermodynamics, the
intcmal cnergy change dE, given by dQ - dW, can be cxpressed as

c,dV ., pdv .
3aV pV

dE,, =

The process from state 2 to 3 has no heat addition, so dQ = 0. The work done by the syslcm is
dW = (p + dp/2) dV/ApV) which, to the first order, is p dV/(pV). The risc in intcmal cnergy is
thercfore the negative of the work

' -d
dE,, = .I’_(_;Vl _
P

Thus, the difference beiween the pressures going from state 1 to 3 is dp, and the rise in intemal

cnergy is

<

c'
3aV '

dE, =

The volume of states 1 and 3 arc identical, so that the Gninciscn parameter T will remain constant for

the dircct transition from state 1 to 3, when using the Mic-Griincisen EOS, which relates states 1 and 3

as follows:
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But path 23 is iscntropic, so that dp/(-dV) is dp/dV ls = (-p/V) dp/dp |,. But dp/dp l, is simply the
squarc of the sound speed C, or alticmately, the ratio of the bulk modulus and the density K/p.

Substuting, and solving for I" gives

r=-3eC?_3ak
¢,  pc,

From the Mic-Griincisen EQOS, it is clcar that the Griincisen paramcicr I” relales changes in intemal
cnergy o changes in pressure at constant volume. As can be scen from the dimensional analysis of
the sccond cxpression for I' which follows, the numecrator expresses the pressure rise per increment of
temperature, while the denominator cxpresses the (volume-based) encrgy rise per increment of
temperaturc.  These terms combine in a way to produce a non-dimensional expression which

represents the Griineisen parameter.

dviv dp
P___3aK=_deg dV/V= dp|/deg - dp =[-].
pc, dE pdE/deg - pdE
p—
deg

Notc: As in other places in this document, dE represents energy change per unit mass.

12. MODE II INSTABILITY OF THE MIE-GRUNEISEN EQUATION OF STATE

Though there is nothing inherently wrong with the Mie-Griinciscn EOS, there arc often situations
where inappropriate choice of data forces a thermodynamic violation. As pointed out in the previous
scction dealing with Modc 1 instability, there are certain empirical Hugoniot fits which may violate
fundamental thermodynamic rules. Clearly, plugging such fits into Mic-Griincisen makcs the
possibility of catastrophic EOS failurce significant. Additionally, there arc inconsistent combinations of
Hugoniot and Griincisen functions which causc thermodynamic violations which are not immediatcly

apparcnt.

To study these, consider a material in the state p, p. E, on the Hugoniot originating at ®,. Vo)

From this state, consider two possiblc paths resulting from a small compressive increment, dp: the



path along the isentrope and also the path along the Hugoniot. Along the isentropic path, the pressure

change is

9

dp = Cldp .
3 | 2° p

L

The intemal energy change along the same path is the ncgative of the work, or

oF

dp = d 2y .
3 p =p, (dplp*)

Along the Hugoniot, the pressure change is simply (dp,/dp) dp. and the energy change, may be
obtained by taking the derivative of the shock cnergy relation Ey - E_ = 172 (p,, + p,) (1/p, - 1/p).
10 get

E,

2, = [@y+ ) 0P+ (1 p, - p) dp,/dp] dp .

It this material is to obey the Mic-Griineisen EQOS, then at the density p + dp,

dp
dp -[p+——"dp]
. ] " dp

Canceling and substituting terms gives

:I‘p Eh+—-——

( dE

dE,
do| - |E,+ =2 dp||.
. p] [“ dp p)

(C? - dp,/dp) =T p (p,/p* - 112 [(p, + p)Ip* + (1lp, - 1/p) dp,/dp]) .

Expressing this in terms of compression u, and solving for T gives

2 [wdpyidp - np,C?

W [ dpaldn - By -P) [ (1+ p)]
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The significance of thic expression is that, for a given Hugoniot relationship p,, as a function of g, the
Griinciscn cocefficient I' and the sound speed C are related. Since the sound speed is known to have
thermodynamic limitations placed upon it, thesc limitations translate into constraints on the Griineisen
parameter I.  Use of the Mic-Griincisen EOS in codes, without the appropriate restraints on I', will

usually result in catastrophic failurc of the EOS.

To cxamine these constraints on I, consider the maximum and minimum possible valucs on C.
Recall that the post shock particle velocity relative to the shock front, cqual to (U, - up), is known to
be subsonic, but approaches sonic conditions for infinitesimal shocks. Thus, as an absolute lower
bound, let C approach (U, - uy). This choice of C gives an upper bound on T'. But (U, - up) cquals
U/(1 + ), so that (U, - up)2 is given by

(U, -u,)? = U /(1 + 1) = (0 -p ) [P, (14 )] .

Substituting this into the expression for I gives, as an upper bound,

'=2/u.

For the lowcer bound on T, onc may assume that the isentrope approaches the Hugoniot. In this case,
dp/dpu |s = dp,/dp. Since dp/op |, cquals p, C? by dcfinition, the minimum value on T’ may be
determined as zcro. By combining these iwo criteria, and calling them the Mode 11 stability criterion,

onc gets

MODE II CRITERION:

0<T<(2/w).

Failure to satisfy this critcrion implics that the slope of the post shock iscntrope docs not fall
between that of the Rayleight linc and the Hugoniot.

Recall, from the idcal gas form, that the paramctcr analogous to I' is constant, and equal to
(y- 1). It may at first appear that the idcal gas form violates the Mode Il stability criterion for large .
However, recall that infinite pressure was approached when the ideal gas compression p equaled
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2/(1 - 1), which is 2/T" in Mic-Griincisen lerms.  Thus, over the physical p domain of the idcal gas

form, which is p < 2/T, Modc 11 stability is not violated.

In gencral though, it becomes clear that the terminal value of the Griinciscn cocfficient, let us call
it T',, must be less than or cqual to 2/, where 1, is defined as that valuc of compression which
produccs infinitc pressure in the Hugoniot.  For the lincar U - u, form, p; occurs when the

denominator (1 - (S - 1) p) becomes zcro, which occurs only if S exceeds unity. In this case,

B, = 1/(S-1).

The value of T, therefore, should be less than or cqual 1o 2(S - 1). For S < 1, the lincar U, - u,,
form becomes unbounded only as p approaches the infinite. In this case, I', must approach zcro.
Similarly, for polynomial fit Hugoniots, shock pressurc becomes unbounded only when compression
approaches infinity. Thus, the Griincisen coefficient I should also approach zcro, all the while

remaining less than 2/, as compressions become very large.

It is unfortunate that data for I" arc gencrally only available at the ambicnt p = 0 condition. As a
result of this, it has been common practice to leave the value of T constant in numcrical computations
for lack of better data. In analyzing the data of Kohn (1969), it is obscrved that nonc of the data
prescnted violate the Mode II stability criterion, 0 < T < 2/, for the range of it over which the data
arc collected. However, should the data be extrapolated to larger values of p, Mode II instabilitics
may result, since 100% of the cubic fits, and 74.5% of the lincar U, - uj fits described by Kohn
(1969) will violatc Mode II stability at larger p if T is held constant at its initial valuc.

" 13. CORRECTIONS FOR MODE Il INSTABILITY
To enhance Modc 11 stability, some code developers have imposed functional forms on the
Griincisen cocfficient. In the case of the EPIC codes, this is not done, and I is held constant at To.

As pointed out, Modc Il criterion will be violated for g > 2/T,. In HULL (Matuska and Oshom
1987), the value of I" is a defined as T = T, p_/p, which in terms of compression y, is

28



r=T,/(+p).

This form can still violate the Mode 11 criterion if T, > 2 and p > 2/(T, - 2). DYNA (Hallquist
1989), as well as versions of CALE (Tipton 1989), usc a first order correction to I, which is

cquivalent to assuming the form on the Griinciscn paramelcr as
I=(T,+Ap)I(1+u),

where A is a paramcter which, when fit to EOS data at modcratc pressurcs, is always greaier than or
cqual to zero and generally lics in the vicinity of 0.5 for most metals (Tipton 1989). If the valuc of A
is chosen as zero, the DYNA/CALE form for T reduces into that used by HULL. Even though a
positive value for the parameter A might cause the data 1o fit better at the pressures of interest, it also
has the side cffect of lessening stability at larger compression. If A is positive, the limits on

compression which assurec Modc I stability arc

(2-T,) +[(2-T,)* + 8 AT
24 ’

A>0.

p,<

For materials like aluminum, with T, = 2.09 and A = 0.49, thc DYNA/CALE Griinciscn form has a
limiting compression of stability ncar 2. This value is better than the limiting value of unity, derived
from the constant T = 2 assumption, but is still prone to failurc when simulating hypervelocity impact.
MESA (Bolstad 1990) uscs a form:

P=Y¢+Y]I(1+u)!

which is dircctly convertable into the CALE version, if onc takes T, = (Y, + ¥)) and A = ¥, Thus,
the arguments made about the CALE form apply to MESA as well

From the perspective of assuring Modc il stability, cven at very large compressions, an altcmate
Griinciscn form, being proposed here is given as follows:
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r= _te
S 1+pp’

where B is the newly introduced parameter. Unlike the other forms on T, where stability is a
coincidental by-product of the choice of T, Modc 11 stability can always be cnsured, with the current
form, given appropriate choice of 3. The form reduces to that used by HULL if B is forced to unity
and can be made to approach constant ' if § equals 0. However, constraining § to a valuc greater
than or cqual to I' /2 will ensure, for any Hugoniot form, that Modc 11 stability is always satisficd for
any finite p. The constraint on §§ can be rclaxed somewhat if the associated Hugoniot form is valid
only in some finitc range 0 < p < u,. An cxample of such a limited domain Hugoniot is the U, - u,,

form, with S > 1, where i, = 1/(S - 1). For thesc cascs, the constraint on B, to ensure Mode 11

stability, is

r,-(2/u,)

B2 5

To see how this proposed form can match the DYNA/CALE form at lower compressions but still
provide stability at higher compressions, Figure 2 is provided. In it, three Gﬁlnciscn rélationships for
aluminum are shown (data for aluminum, T, = 2.09, and S = 1.33 are extracted from Kohn [1969]).
The A = .49 (CALE) curve shows the functional form of I, using the DYNA/CALE functional form.
The value of A = .49 comes dircctly from the CALE manual (Tipton 1989) and was fitted from
cxperimental data. At large compressions (in excess of 2), the CALE Griineisen form violates Mode 11
stability. The A = 0 (HULL) curve shows the DYNA/CALE curve for A = 0, which reduces into the
form used by HULL. This form remains stable out to the limit compression, p, = 3, but does not
follow the CALE curve well at lesser compressions, where experimental data were used to fit the A
parameter. The B = .72 curve, which follows the functional form of the currently proposcd model,
follows the CALE curve well at lower compressions, and retains stability out to the limit compression.
Notice that thc minimuin value of B, which is guarantced (o retain stability, can be obtained by
substituting fo = 2.09 and u, = 1/(1.33 - 1) = 3 into the cquation above. This minimum valuc is
computed as 0.712, which thus guided the selection of B = .72 for the figure.
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Noic that somc nen-positive valucs of 3 arc permissablce, but only if Iy €2/, is truc. Fora
polynomial Hugoniot fit, where i, is nccessarily infinite, f§ is necessarily positive. Onc can combine

the 3 constraint dircctly with the proposed T relation to obtain the relation in tcrms of T, t. and

2T,
s .
2+(F,-2/p) p

14. MODE HI INSTABILITY USING THE MIE-GRUNEISEN EQUATION OF STATE

Mode II instability ariscs, when the square of the local speed of sound is computed as negative—
a situation which clearly bears no relation to any real phcnomenon. In the Mic-Griincisen EOS, it can
arise, because of the fact that the EOS is lincarized about some reference curve, which is the
Hugoniot, for impact computations. Since the real world is rarcly lincar, this idcalized lincarization
becomes less and less accurate the further one gets from the reference curve. When one gets suitably
distant from the reference curve, the thermodynamic data generated from a lincarized EOS can be not

only inaccurate but also in violation of basic thermodynamic principles.

When the situation of imaginary sound speed occurs, many codes (EPIC3, for cxample) resct their
value to zcro and merrily continuc on their computational way. Unfortunatcly, the situation can be
much more scrious than just computing an inaccuratc sonic velocity. An imaginary sopic velocity
implies that an increment of isentropic compression on an element will result in a DECREASE in
pressure.  Resetting the sonic veiocity to zero does noihing io prevent the thermodynamic state of the
clement from going berserk. It is these sorts of situations which most often result in catastrophic
manifestations of instability over the span of one or several computational itcrations—ballooning

clements, collapsing clements, and wild cnergy fluxcs are typical.

The local speed of sound is defined as the raic at which an infinitesimal disturbance propagatcs
through a medium. Expressed by the symbol "C”, it is mathematically expressed as:

C = propl, .
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To derive its functional form for the Mic-Griinciscn EGS,
P-py=Tp(E-E,),

take the denvative with respect to an increment of density (dp) along the isentrope. This produces the

following result:

dp dp, JdE dE, d \
o9y 7 o r =1 - 22X (E-E) £ (1 .
p[ ' dp ( » dp (fe)

Conventing the derivatives into comprssion form, this relation may be ultimately simplified, with

cnergy terms climinated, to produce the result:

MODE 1II CRITERION:

2 . r*l....l___. - ‘_j___.._. .fd_“;u_'l-__";_}:‘.'. >0
Po € (lw r u)(p p')*du 2["@ 1+p '

For the special casc of p = p, (i.c., along thc Hugoniot), this form expresses the relationship derived

for I" in Scction X1,

[ndp,/du-up,C?
[wdpy/dp - (P -p) (1 +u)]’

r-2
B

which was subscquently used to derive the Mode II criterion. Note, however, that Mode 11 only
requires the sound speed to be positive at all thermodynamic states, whercas Mode 11 required the
slope of the isentrope (which is dirccily related to the sound speed) to be nct only positive but
greater than the Rayleigh line slope. Thus, the Mode II criterion is more stringent than Mode 111, but

it only applics along a Hugoniot.

Thus, if the Modc Il criterion is violated at some statc, which happens to lic on the Hugoniot
(py, 1), then the Mode 11 criterion will have already been violated at that compression p. However,
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the full Mode I critcrion gives the opportunity to study stability at all states in the (p, v) or (p, W)

plane, not just along the Hugoniot.

Opcrational simplitications may be possible when applying the Mode 111 criterion, depending on
the actual choices of the p, and I functions. As an example, if onc adopts the functional form for the
Griincisen cocfficient proposed in Scction XI1, I' = I /(1 + Bu), then the Griinciscn derivative terms
simplify niccly:

lda Ty . _B
' du r, (1+8p)

Because of the lincarized nawure of Mie-Grincisen, there can be states where Mode 1T stability is
violated. However, their occurance can be greatly reduced, given an appropriate choice of p, and T’
functions. As an cxample, consider Figure 3, which depicts the (p, v) plane cubic fit Hugoniot for
aluminum with ceefficients 79903, 1.13927, and 1.39792 Mbar, respectively, and density of 2.7 g/cm3
as given in Kohn (1969). If T is held constant at its initial value of 2.09, corresponding to B = 0 in
the cumerily proposcd model, the Mode 1T stability line, which divides the (p, v) plane into stable and
unstablc regions, is scen 1o produce instability in a large part of the (p, v) piane, including
thermodynamic states in which the simulation might reasonably expect to exist. Note that an
isentrope, when it crosses into the unstable region of the (p, v) plane, changes its slope so that
increased compressions actually cause a decrease in pressure. R is this sort of unstable behavior which

will cause a sitnulation to come screcching 10 a halt in no time at all.

On the other hand, if § is increased to a value which guaranices Mode 1 stability, as discussed in
the previous scction, Mode 11 stability is also greatly enhanced. Since a cubic fit Hugoniot has no
limiting value of compression, the value of B 1o guarantee Mode Il stability must equal or exceed
/2, which for the casc in point (T, = 2.09), is 1.045. With this new valuc of f3, shown in Figure 4,
the unstable region is limited to a very small portion of the (p, v) plane, which represents material
under very large tensions. In fact, the tensions required 10 produce instability are so large (391 kbar

atv = v, for the case in point), that aluminum's spall pressure would be exceeded and material failure

would occur before the maigrial was cver able to approach this unstable thermodynamic state.
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15. OTHER PROBLEMS WITH MIE-GRUNEISEN EOS IMPLEMENTATIONS

Movement of nodes along Lagrangian contact surfaccs may produce occasional valucs of
compression in excess of that anticipatcd from analytical considerations. Though such artifacts arc
purcly computational, they can causc the compression to go out of (p, v) domain of known data or,
worse yet, out of the physically plausible (p, v) domain.s When this happens, the code may dic
insiaatly or generate state valucs so inaccurate as Lo causc computational "ripples” which disturb the
rest of the ctherwise valid computation. This problem can usually be circumvented by forcing a
smaller integration timestep on the computation or, alternately, by using an EQS fomulaliqn which

remains physical out to larger values of compression.

16. CONCLUSIONS

A review of fundamental shock-transition thcory was presented. The cquation of stalc was
introduced as an analytical vehicle to express material pressure as a function of density and
temperature (or intemal cnergy in the case of adiabatic transition). The importance of thecrmodynamic
principles was emphasized as a tool to study the stability of van'ohs EOS implementations. The
Mic-Griincisen EOS, with a Hugoniot reference function, was singled out for study because of its

relative importance in the computational modeling of shock transition.

Starting from the fundamental laws of thermodynamics, three criteria were developed to measurc
the stability of equations of state and were applied specifically to the Mie-Griineisen EOS, with |
Hugoniot reference, to investigate the stability characteristics thereof. Results indicate numerous
possibilitics of instability under various circumstances. Circumstances which could bring on the
investigated instabilitics included: 1) an improperly formulated EOS; 2) the choice of improper data
for an otherwise suitable EOS; 3) the application of given EOS data beyond the thermodynamic region
for which the data were originally intended; and 4) the assumption of parameter constancy when
additional data were not readily available. Several sources of published material data and Hugoniot
forms were investigated for stability. Instability was observed in these data, especially so under,'
conditions where the applied compression was greater than that for which the data were fit.
Unfortunately, the existence in codes of "EOS material libraries” virtually guarantees the indiscriminate
use of EOS data, thus enhancing the likelihood of EOS instability. |
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Based on this report’s findings and the author’s cxperience, it is believed that a significant
percentage of hydrocode computations which fail do so as a direct or indirect result of the EOS
calculation. Typical code failurcs (for example: negative absolute energies or pressures, exploding or
collapsing clements, and negative clement stiffnesscs) are due, probably in part, if not completely, to

internal inconsistencics arising {rom a misapplicd EOS. A basic understanding of thermodynamics and

its rclationship to shock transition will pcrmit the thoughtful code developer and user to verify, in

advance of computational solution, the validity of his data and EQS forms.




17. REFERENCES
Bolstad, J. "MESA Generator & Gencrator Window Input Specifications.” LA-90-i31, Los Alamos
National Laboratory, Los Alamos, NM, 14 March 1990.

Hallquist, J. O., and R. G. Whirley. 'DYNA3D User’s Manual.” UCID-19592, Lawrence Livermore
National Laboratory, Livermore, CA, Rev. 5, May 1989.

Johnson, G. R., D. D. Colby, and D. J. Vavrick. "Further Development of the EPIC-3 Computer
Program for Three-Dimensional Analysis of Intense Impulsive Loading.” AFATL-TR-78-81, Air
Force Armament Laboeratory, Eglin AFB, FL, July 1978.

Kohn, B. J. "Compilation ot Hugoniot Equations of State." AFWL-TR-69-38, Air Force Weapons
Laboratory, Kirtland AFB, NM, April 1969.

Maluska, D. A., and J. J. Osbomn. "HULL Documentation.” Orlando Technology, Inc. Report,
Orlando, FL, Rev., May 1987.

McQuarrie, D. A. Statistical Mechanics. New York: Harper Row, 1576.

Tipton, R. "CALE User's Manual, Version 830801." Lawrence Livermore National Laboratory,
Livermore, CA, 1 August 1989.

Zcldovich, Y. B., and Y. P. Razicr. Physics of Shock Waves and High-Temperature Hydrodynamic
Phenornena. Academic Press: New York, 1966.

Zuker, R. D. Fundamentals of Gas Dynamics. Portiand: Matrix Publishers, 1977.

39



INTENTIONALLY LEFT BLANK.

40




No of

Copies Organization

2

Administrator

Oefense Technical Info Center
ATTN: DTIC-DDA

Cameron Station

Alexandria, VA 22304-6145

HQDA (SARD-TR)
WASH DC 20310-0001

Commander

U.S. Army Materiel Command
ATTN: AMCDRA-ST

5001 Eisenhower Avenue
Alexandria, VA 22333-0001

Commander

U.S. Army Laboratory Command
ATTN: AMSLC-DI.

2800 Powder Mill Road

Adeiphi, MD 20783-1145

Commander

U.S. Army Armament Research,
Development, and Engineering Center

ATTN: SMCAR-IMI-I

Picatinny Arsenal, NJ 07806-5000

Ccmmander

U.S. Army Armament Research,
Development, and Engineering Center

ATTN: SMCAR-TDC

Picatinny Arsenal, NJ 07806-5000

Director

Benet Weapons Laboratory

U.S. Army Armament Research,
Development, and Engineering Center

ATTN: SMCAR-CCB-TL

Watervliet, NY 12183-4050

Commander

US. Army Armament, Munitions
and Chemical Command

ATTN: SMCAR-ESP-L

Rock Island, IL 61299-5000

Director

U.S. Army Aviation Research
and Technology Activity

ATTN: SAVRT-R (Library)

M/S 219-3

Ames Research Center

Motfett Field, CA 34035-1000

No of

Copies Organization

1

{Class. only}{

{Unclass. only)q

41

10

Commander

U.S. Army Missile Command
ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 358398-5010

Commander

U.S. Army Tank-Automotive Command
ATTN: AMSTA-TSL (Technical Library)
Warren, M1 48337-5000

Director

U.S. Army TRADOC Analysis Command
ATTN: ATRC-WSR

White Sands Missile Range, NM 88002-5502

Commandant

U.S. Army Infantry School
ATTN: ATSH-CD (Security Mgr.)
Fort Benning, GA 31905-5660

Commandant

U.S. Army Infantry School
ATTN: ATSH-CD-CSO-OR
Fort Benning, GA 31905-5660

Air Force Armament Laboratory
ATTN: AFATL/DLODL
Eglin AFB, FL 32542-5000

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen

Cdr, USATECOM
ATTN: AMSTE-TD

Cdr, CRDEC, AMCCOM

ATTN: SMCCR-RSP-A
SMCCR-MU
SMCCR-MS|

Dir, VLAMO
ATTN: AMSLC-VL-D

Dir, BRL
ATTN: SLCBR-DD-T




No. of

Copies Organization

2

Director

DARPA

ATTN: J. Richardson
MAJ R. Lundberg

1400 Wilson Blivd.

Arlington, VA 22209-2308

Detense Nuclear Agency
ATTN: MAJ James Lyon
6801 Telegraph Rd.
Alexandria, VA 22192

Commander

US Army Strategic Defense Command
ATTN: CSSD-H-LL, Tim Cowles
Huntsville, AL 35807-3801

Commander

USA ARMC

ATTN: ATSB-CD, Dale Stewart
FI. Knox, KY 40121

Commander

US Army MICOM

ATTN: AMSMI-RD-TE-F, Matt H. Triplett
Redstone Arsenal, Al. 35898-5250

Commander

TACOM RD&E Center

ATTN: AMCPM-ABMS-SA, John Rowe
AMSTA-RSS, K. D. Bishnoi

Warren, M|l 48397-5000

Commander

US Army, ARDEC

ATTN: SMCAR-CCH-V, M. D. Nicolich
SMCAR-FSA-E, W. 2. Dunn

Picatinny Arsenal, NJ 07606-5000

Commander

US Army Belvoir RD&E Center

ATTN: STRBE-NAE, Bryan Waestlich
STRBE-JMC, Terilee Hanshaw
STRBE-NAN, Steven G. Bishop
STRBE-NAN, Josh Williams

Ft. Belvoir, VA 22060-5166

42

No. of

Copies Organization

1

11

USMC/MCRDAC/PM Grounds Wpns. Br.
ATTN: Dan Haywood

Firepower Div.

Quantico, VA 22134

Commander

Naval Weapons Center

ATTN: Tucker T. Yee (Code 3263)
Don Thompsen (Code 3268)
W. J. McCarter (Code 6214)

China lake, CA 93555

Commander
Naval Weapons Support Center
ATTN: John D. Barber
Sung Y. Kim
Code 2024
Crane, IN 47522-5020

Commander

Naval Surface Wartare Center

ATTN: Charles R. Garnett (Code G-22)
Linda F. Williams (Code G-33)
Mary Jane Sill (Code H-11)

Dahigren, VA 22448-5000

Commander
Naval Surface Wartare Center
ATTN: Pao C. Huang (G-402)
Bryan A. Baudler (R-12)
Robert A. Moffett (R-12)
Robert Garrett (R-12)
Thomas L. Jungling (R-32)
Richard Caminity (U-43)
John P. Maira
Paula Walter
Lisa Mensi
Kenneth Kiddy
F. J. Zerilli
10901 New Hampshire Ave.
Silver Spring, MD 20903-5000

Director

Naval Civil Engr. Lab.

ATTN: Joel Young (Code L-56)
Port Hueneme, CA 93043




No. of
Copies Organization

4 Air Force Armament Labcratory
ATTN: AFATULOLJW (W. Cook)
AFATL/DLJW (M. Nixon)
AFATU/MNW (LT Donald Lorey)
AFATUMNW (Richard D. Guba)
Eglin AFB, FL 32542

8 Director

Sandia National Laboratories

ATTN: Robert O. Neliums (Div. 9122)
Jim Hickerson (Div. 9122)
Marlin Kipp (Div. 1533)
Allen Robinson (Div. 1533)
Wm. J. Andrzejewski (Div. 2512)
Don Marchi (Div. 2512)
R. Graham {Div. 1551)
R. L.afarge {Div. 1551)

P. O. Box 5800

Albuquerque, NM 87185

8 Director

Los Alamos Natwonal L aberatory

ATTN: G. E. Cort (MS K574)
Tony Rollett (MS K574)
Mike Burkett (MS K574)
Robert Karpp (MS PS40)
Rudy Henninger (MS K557, N-6)
Roy Greiner (MS-G740)
James P. Ritchie (B214, T-14)
John Bolstad (MS G787)

P. O. Box 1663

Los Alamos, NM 87545

13 Director

Lawrence Livermore National Laboratory

ATTN: Barry R. Bowman (L-122)
vard Dixon (L-122)
Raymond Pierce (L-122)
Russell Rosinsky (L-122)
Owen J. Alford (L-122)
Diana Stewart {L-122)
Tony Vidlak (L-122)
Albert Holt (L-290)
John E. Reaugh (L-290)
David Wood (L.-352)
Robent M. Kuklo (L-874)
Thomas McAbee (MS-35)
Michael J. Murphy

P. O. Box 808

Livermare, CA 94550

No. of

Copies Organization

1

Battelle Northwest

ATTN: John B. Brown, Jr.
MSIN 3 K5-22

P. O. Box 999

Richland, WA 93352

Advanced Technology, Inc.
ATTN: John Adams

P. O. Box 125

Dahlgren, VA 22448-0125

Explosive Technology
ATTN: Michael L. Knaebel
P. O. Box KK

Fairfield, CA 94533

Rockwell Missile Systems Div.
ATTN: Terry Neuhart

1800 Satellite Bivd.

Duluth, GA 30136

Rockwell Intl./Rocketdyne Div.
ATTN: James Moldenhauer
6633 Canoga Ave /HB 23)
Canoga Park, CA 91303

McDonnell Douglas Helicopter
ATTN: Loren R. Bird
Lawrence A, Mason
5000 E. McDowell Rd. (MS 543-D216)
Mesa, AZ 85205

University of Colorado
Campus Box 431 (NNT 3-41)
ATTN: Timothy Maclay
Boulder, CO 80309

New Mexico inst. Mining & Tech.
Campus Station (TERA Group)
ATTN: David J. Chavez
Socorro, NM 87801

Schiumberger Perorating & Test

ATTN: Manuel T. Gonzalez
Dan Markel

P. O Box 1530/14910 Ariline Rd.

Rosharon, TX 77583-1590




No. of

Copies Qrganization

2

Aerojet Ordnance/Exp. Tech. Ctr.
ATTN: Patrick Wolf
Gregg Padgett
1100 Bulloch Blvd.
Socorro, NM 87801

Physics International
ATTN: Ron Funston
Lamont Garnett
2700 Merced St./P. O. Box 5010
San Leandro, CA 94577

Lockheed Missile & Space Co., Inc.
ATTN: S. Kusumi (O-81-11, Bldg. 157)
Jack Philips (0-54-50)

P. O. Box 3504
Sunnyvale, CA 94088

Lockheed Missile & Space Co., Inc.
ATTN: Richard A. Hoftman

Santa Cruz Fac./Empire Grade Rd.
Santa Cruz, CA 85060

Boeing Corporation

ATTN: Thomas M. Murray (MS-84-84)
P. O. Box 3999

Sealtle, WA 98124

Mason & Hanger - Silas Mason Co.

ATTIN: Thomas J. Rowan
Christopher Vogt

lowa Army Ammunition Plant

Middletown, 1A 52638-9701

Nuclear Metals Inc.
ATTN: Jeff Schreiber
2229 Main St.
Concord, MA 01742

Lockheed Engineering & Space Sciences
ATTN: Ed Cykowski, MS B-22

2400 NASA Road 1

Houston, TX

Dyna East Corporation
ATTN: P.C. Chou

R. Ciccarelli
3201 Arch St.
Philadelphia, PA 19104

No. of

Copies Organization

2

Southwest Research Institute
ATTN: C. Anderson
A. Wenzel
6220 Culebra Road
P. O. Drawer 28510
San Antonio, TX 78284

Battelle - Coiumbus Laboratories
ATTN: R. Jameson
S. Golaski
505 King Avenue
Columbus, OH 43201

Alliant Techsystems, Inc.
ATTN: Gordon R. Johnson
Tim Holmquist
Kuo Chang
MN 48-2700
7225 Northland Dr.
Brooklyn Park, MN 55428

S-Cubed

ATTN: R. Sedgwick
P.O. Box 1620

La Jolla, CA 952038-1620

California Research and Technology,
Inc.
ATTN: Roland Franzen
Dennis Orphal
5117 Johnson Dr.
Pleasanton, CA 94566

Orlando Technology, Inc.
ATTN: Dan Matuska
J. Osborn
P. O. Box 855
Shalimar, FL 32579

Kaman Sciences Corporation
ATTN: D. Barnetle
D. Elder
P. Russell
P. O. Box 7463
Colorado Spring, CO 80933




No. of

Copies Organization

2

Detense Research Establishment Suffield
ATTN: Chris Weickert

David MacKav
Ralston, Alberta, TOJ 2NO Ralston
CANADA

Defense Research Establishment Valcanrtier
ATTN: Norben Gass

P. O. Box 8800

Courcelette, PQ, GOA 1RO

CANADA

Canadian Arsenals, LTD
ATTN: Pierre Pelletier

5 Montee des Arsenaux
Villie de Gardeur, PQ, J572
CANADA

Ernst Mach Insiitute
ATTN: A.J. Stiip
Eckerstrasse 4
D-7800 Freiburg i. Br.
GERMANY

IABG
ATTN: H. J. Raatschen

W. Schittke

F. Scharppt
Einsteinstrasse 20
D-8012 Ottobrun B. Munchen
GERMANY

Royal Amament R&D Establishment
ATTN: lan Cullis

Fort Halstead

Sevenoaks, Kent TNt14 78J
ENGLAND

Centre d'Etudes de Gramat
ATTN: SOLVE Gerard
46500 Grama!

FRANCE

Centre d'Etudes de Vaujours
ATTN: PLOTARD Jean-Paul
Boite Postale No. 7

77181 Country

FRANCE

45

No. of

Copies Organization

1

PRB S.A.

ATTN: M. Vansnick

Avenue de Tervueren 168, Bis. 7
Brussels, B-1150

BELGIUM

AB Bofors/Ammunition Division
ATTN: Jan Hasslid

BOX 900

S-691 80 Bofors

SWEDEN




INTENTIONALLY LEFT BLANK,




